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Abstract A nonsmooth multiobjective continuous-time problem is considered. The defi-
nition of invexity and its generalizations for continuous-time functions are extended. Then,
optimality conditions under generalized invexity assumptions are established. Subsequently,
these optimality conditions are utilized as a basis for formulating dual problems. Duality
results are also obtained for Wolfe as well as Mond-Weir type dual, using generalized invex-
ity on the functions involved.
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1 Introduction

The relationship between mathematical programming and classical calculous of variation was
explored and extended by Hanson [6]. Since then, variational programming problems have
attracted some attention in the literature (see, e.g. [1,8,12]). Optimality conditions and dual-
ity results were obtained for a variational problem by Mond and Hanson [9] under convexity
assumptions. In mathematical programming, the Kuhn-Tucker conditions are sufficient for
optimality if the functions involved are convex. In the last few years, attempts have been
made to weaker the convexity hypotheses. As it is known, invexity has been introduced in
optimization theory by Hanson, see [7], as a substitute for convexity in constraint optimiza-
tion. Subsequently, Vial [13] has introduced ρ-convex functions and he used this concept to
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obtain some duality results. Invexity was extended to varaitional problems by Mond et al.
[10].

In this paper, we introduce the definition of ρ-invexity in the continuous time context.
Then, optimality conditions for nonsmooth multiobjective continuous-time problems are
established under various ρ-invexity restrictions on the component of the functions describ-
ing constraints and the objectives functions.

This work is organized as follows. In Sect. 2, we recall some basic definitions of non-
smooth analysis and we present a numbers of definitions which will be needed in the sequel.
In Sect. 3, we establish the nonsmooth optimality conditions for a class of nonsmooth mult-
tiobjective continuous-time problems. In Sect. 4, we formulate and discuss two duality type
problems and prove appropriate duality theorems.

2 Preliminary

In this work we introduce the following multiobjective continuous-time problem:

(MCT ) min[
T∫

0

f1(t, x(t))dt, · · · ,

T∫

0

fr (t, x(t))dt]

subject to

gi (t, x(t)) ≤ 0, a.e. t ∈ [0, T ],
i ∈ M = {1, 2, ..., m} x ∈ X .

Here X is a nonempty open convex subset of the Banach space Ln∞[0, T ] of all n-dimen-
sional vector-valued Lebesgue measurable essentially bounded functions defined on the com-
pact interval [0, T ] ⊂ R, with the norm ‖ · ‖∞ defined by

‖x‖∞ = max
1≤ j≤n

ess sup{|x j (t)|, 0 ≤ t ≤ T },

where for each t ∈ [0, T ], x j (t) is the j th component of x(t) ∈ R
n . We define g(t, x(t)) =

G(x)(t) and fi (t, x(t)) = φi (x)(t), i ∈ L = {1, 2, ..., r}, where G(·) is a map from X into
the normed space �m

1 [0, T ] of all Lebesgue measurable essentially bounded m-dimensional
vector functions defined on [0, T ], with the norm ‖ · ‖1 defined by

‖y‖1 = max
1≤i≤m

T∫

0

|yi (t)|dt,

and φi is a map from X into the normed space �1
1[0, T ].

Let Fp be the set of feasible solutions to (MCT ),

FP = {x ∈ X : gi (t, x(t)) ≤ 0, a.e t ∈ [0, T ], i ∈ M}.
We assume that each functions t → fi (t, x(t)) and t → gi (t, x(t)) are Lebesgue measurable
and integrable for all x ∈ X . We also assume that the functions fi (t, x(t)) and g j (t, x(t))
are locally Lipschitz on X throughout [0, T ].

We recall basic concepts and tools from nonsmooth analysis. Most of the material included
here can be found in [4,5]. Let Y be a Banach space and F : Y → R be a locally Lipshitz
function; i.e., for each y ∈ Y , there exists ε > 0 and a constant K > 0, such that
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|F(x1) − F(x2)| ≤ K‖x1 − x2‖ ∀x1, x2 ∈ y + εB.

where B is the open unit ball of Y .
The Clarke generalized directional derivative of f at x in the direction of a given d ∈ Y ,

denote by F0(x; d), is defined by

F0(x; d) := lim sup
y→x
λ↓0

F(y + λd) − F(y)

λ
.

The generalized gradient of F at x , denoted by ∂c F(x), is defined by

∂c F(x) := {ξ ∈ Y ∗ : 〈ξ, d〉 ≤ F0(x; d) ∀d ∈ Y }.
Here, Y ∗ denotes the dual space of continuous linear functionals on Y and 〈·, ·〉 : Y ∗×Y → R

is the duality pairing.
Now, assume x̄ ∈ X and h ∈ Ln∞[0, T ]. The continuous Clarke generalized directional

derivative of fi is defined by

f 0
i (t, x̄(t); h(t)) := φ0

i (x̄; h)(t) := lim sup
y→x̄
λ↓0

φi (y + λh)(t) − φi (y)(t)

λ
,

a.e. t ∈ [0, T ].
We recall the integration of multifunctions.
Given a multifunction H : [0, T ] → R

n, denote by F(H) the following set:

F(H) = { f ∈ Ln
1[0, T ], f (t) ∈ H(t) a.e. t ∈ [0, T ]}.

We define the integral of H, denoted by
∫ T

0 H(t)dt , as the following subset of R
n :

T∫

0

H(t)dt :=
{ T∫

0

f (t)dt : f ∈ F(H)

}
.

We introduce invexity notion in the continuous-time context. Let f be a real function on
[0, T ]× X and suppose that f (t, .) is locally Lipschitz on X throughout [0, T ]. Assume that
there exists a function η : [0, T ] × X × X → R such that the function t → η(t, x(t), x̄(t))
is in Ln∞[0, T ], η(t, x(t), x(t)) = 0.

Definition 2.1 The functional F(x) =
T∫
0

f (t, x(t))dt is said to be

(i) invex at x̄ , with respect to η, if for all x ∈ X ,

T∫

0

f (t, x(t))dt −
T∫

0

f (t, x̄(t))dt ≥
T∫

0

f 0(t, x̄(t); η(t, x(t), x̄(t))dt,

(ii) is strictly invex if the above inequality is strict for x(t) 
= x̄(t).

Assume that there exist function η : I × X × X → R with η(t, x, x) = 0 and d(., ., .) is
a pseudometric and ρ ∈ R.
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Definition 2.2 The functional F(x) is said to be ρ-pseudoinvex at x̄ with respect to function
η, if for all x ∈ X ,

T∫

0

f 0(t, x̄(t); η(t, x(t), x̄(t)) ≥ −ρ

T∫

0

d2(t, x(t), x̄(t))dt

⇒ F(x) ≥ F(x̄).

Definition 2.3 The functional F(x) is said to ρ-strictly pseudoinvex at x̄ with respect to
function η, if for all x ∈ X ,

T∫

0

f 0(t, x̄(t); η(t, x, x̄) ≥ −ρ

T∫

0

d2(t, x(t), x̄(t))dt

⇒ F(x) > F(x̄).

Definition 2.4 The functional F(x) is said to be ρ-quasiinvex at x̄ with respect to function
η, if for all x ∈ X ,

F(x) ≤ F(x̄) ⇒
b∫

a

f 0(t, x̄(t); η(t, x(t), ¯x(t))dt ≤ −ρ

T∫

0

d2(t, x(t), x̄(t))dt.

The functional F(x) is said to be ρ-strictly quasiinvex at x̄ with respect to function η, if
for all x ∈ X ,

F(x) ≤ F(x̄) ⇒
b∫

a

f 0(t, x̄(t); η(t, x(t), ¯x(t))dt < −ρ

T∫

0

d2(t, x(t), x̄(t))dt.

We use the acronyms ρ − P I X, ρ − S P I X, ρ − Q I X, ρ − SQ I X , for F(.) when it is
ρ-pseudoinvex, ρ- strictly pseudoinvex, ρ-quasiinvex and ρ-strictly quasiinvex, respectively,
at each point of X

Definition 2.5 [3] A feasible solution x∗ for MCT is said to be efficient for MCT if there
is no other feasible x for MCT such that

T∫

0

fi (t, x(t))dt <

T∫

0

fi (t, x∗(t))dt, for some i ∈ M,

T∫

0

f j (t, x(t))dt ≤
T∫

0

f j (t, x∗(t))dt, for all j ∈ M.

Below we introduce two examples which show that in general, one can find a ρ-pseudo-
invex or ρ-quasiinvex function which is not invex function with respect to the same η. This
implies that our conditions are more general than invexity.

In the following example we consider a function which is ρ-pseudoinvex but it is not
invex with respect to the function η defined by η(x(t), y(t)) = x(t) − y(t).
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Example 2.6 Define the function f : [0, 1] × [−1, 1] → R by

f (t, x(t)) =
{

αx(t), 0 ≤ x ≤ 1,

x(t), −1 ≤ x < 0,

where x : [0, 1] → [−1, 1] is defined by x(t) = t x, x ∈ R and 0 < α < 1.

It is easy to verify that F(x) =
1∫

0
f (t, x(t))dt is ρ-pseudoinvex at x∗(t) ≡ 0 with ρ < 0

and d(x, 0) = |x | 1
2 .

Now we present an example of a ρ-quasinvex function which is not invex with respect to
the function η defined by η(x(t), y(t)) = x(t) − y(t).

Example 2.7 Let the function f (t, x(t)) : [0, 1] × R → R be defined by

f (t, x(t)) =
{

x3(t), x ≥ 1,

x(t), x < 1,

where x(t) is defined by x(t) = t x, x ∈ R.

At x∗(t) = t , the functional F(x) = ∫ 1
0 f (t, x(t))dt is ρ-quasiinvex with respect to the

function η at x∗(t) = t with ρ < 0 and d(x, 0) = |x | 1
2 .

3 Optimality conditions

In this section we discuss optimality conditions for (MCT ) under various generalized ρ-in-
vexity conditions. To deduce our main results, the following lemmas are necessary.

Lemma 3.1 [3] A point x∗ ∈ FP is an efficient solution for (MCT ) if and only if x∗ solves
Pk(x∗) for all k = 1, 2, . . . , r , defined as

min

T∫

0

fk(t, x(t))dt

Pk(x∗) subject to

gi (t, x(t)) ≤ 0 i ∈ M a.e. t ∈ [0, T ]
T∫

0

f j (t, x(t))dt ≤
T∫

0

f j (t, x∗(t))dt,

for all j ∈ L = {1, 2, . . . , r}, j 
= k.

Consider the following constraint qualification(CQ) from [2],

(C Q) ∩i∈M K (gi , x̄) 
= ∅,

where

K (gi , x̄) = {h ∈ Ln∞[0, T ] : g0
i (t, x̄(t); h(t)) < 0, a.e. t ∈ Ai (x̄), i ∈ M}

and Ai (x̄) = {t ∈ [0, T ] : gi (t, x̄(t)) = 0}.
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Lemma 3.2 [11] If x̄ is an efficient solution of (MCT ), and Pk(x̄) satisfies the constraint
qualification (CQ) at x̄ for some k, then there exist τ 0 ∈ R

r and piecewise smooth function
λ0 : I → R

k satisfying the following:

0 ∈
T∫

0

⎛
⎝ r∑

i=1

τ 0
i ∂c fi (t, x̄(t)) +

∑
j∈M

λ0
j (t)∂cg j (t, x̄(t))

⎞
⎠ dt (1)

m∑
j=1

λ0
j g j (t, x̄(t)) = 0, λ0

j (t) ≥ 0, a.e. t ∈ [0, T ],
r∑

i=1

τ 0
i = 1, τ 0

i ≥ 0. (2)

Theorem 3.3 Suppose that there exist a feasible solution x∗ for (MCT) and τ ∈ R
r , λ ∈

Lm∞[0, T ] such that:

0 ∈
T∫

0

⎛
⎝ r∑

i=1

τi∂c fi (t, x∗(t)) +
∑
j∈M

λ j (t)∂cg j (t, x∗(t))

⎞
⎠ dt (3)

m∑
j=1

λ j (t)g j (t, x∗(t)) = 0, λ j (t) ≥ 0,

r∑
i=1

τi = 1, τi ≥ 0. (4)

If
∫ T

0 fi (t, x(t))dt, i ∈ L, are ρi -SQIX and
∫ T

0 λi (t)gi (t, x(t)), i ∈ M are σi -SQIX at x∗
with the same η(t, x(t), x∗(t)) for all functions, with

∑
(τiρi +σi ) ≥ 0, then x∗ is an efficient

solution for (MCT).

Proof Suppose that x∗ is not an efficient solution for (MCT). Then there exists x ∈ Fp , such
that

T∫

0

fi (t, x(t))dt <

T∫

0

fi (t, x∗(t))dt, for some i ∈ L ,

T∫

0

fi (t, x(t))dt ≤
T∫

0

fi (t, x∗(t))dt. for all i ∈ L .

It follows by (4) that

λ j (t)g j (t, x(t)) ≤ 0 = λ j (t)g j (t, x∗(t)) a.e. in [0, T ], j ∈ M.

By quasiinvexity assumptions, we have

T∫

0

{λ j (t)g
0
j (t, x∗(t); η(t, x(t), x∗(t))}dt < −σ j

T∫

0

d2(t, x(t), x∗(t))dt. (5)

T∫

0

f 0
i (t, x∗(t); η(t, x(t), x∗(t))dt < −ρi

T∫

0

d2(t, x(t), x∗(t))dt. (6)

123



J Glob Optim (2009) 43:593–606 599

Now from (5−6) it follows that

T∫

0

⎧⎨
⎩

r∑
i=1

τi f 0
i (t, x∗(t); η(t, x(t), x∗(t)) +

m∑
j=1

λ j (t)g
0
j (t, x∗(t); η(t, x(t), x∗(t))

⎫⎬
⎭ dt

< −
∑

(τiρi + σi )

T∫

0

d2(t, x(t), x∗(t))dt < 0,

which contradicts (3). Therefore, we conclude that x∗ is an efficient solution of (MCT). ��
Remark 3.4 Theorem 3.3 also holds under the following different types of assumptions;

(a)
T∫
0

fi (t, x(t))dt is ρi -QIX at x∗ with respect to η for all i ∈ L and

T∫
0

w(t)T g0(t, x(t))dt is σ -SQIX at x∗ with respect to the same η and
∑

τiρi + σ ≥ 0.

(b)
T∫
0

fi (t, x(t))dt is ρi -QIX at x∗ with respect to functions η for all i ∈ L and

T∫
0

w(t)T g0(t, x(t)dt is σ -QIX at x∗ with respect to the same η and
∑

τiρi + σ > 0.

4 Duality theorems

In this section two duals for (MCT ) are proposed and duality relationships are established
under generalized ρ-invexity assumptions:

4.1 Wolf dual(WD)

.

max

⎡
⎣

T∫

0

{( f1(t, u(t)) + w(t)T g(t, u(t))}dt, ...,

T∫

0

{( fr (t, u(t)) + w(t)T g(t, u(t))}dt

⎤
⎦

subject to

0 ∈
T∫

0

{
r∑

i=1

τi∂c fi (t, u(t)) + w(t)T ∂cg(t, u(t))}dt t ∈ [0, T ], (7)

T∫

0

w(t)T g(t, u(t))dt ≥ 0, (8)
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r∑
i=1

τi = 1; τi ≥ 0, w j (t) ≥ 0, j ∈ M a.e. t ∈ [0, T ]. (9)

4.2 Mond-Weir dual (MWD)

max

⎡
⎣

T∫

0

f1(t, u(t))dt, . . . ,

T∫

0

f2(t, u(t))dt, . . . ,

T∫

0

fr (t, u(t))dt

⎤
⎦

subject to

0 ∈
T∫

0

{
r∑

i=1

τi∂c fi (t, u(t)) + w(t)T ∂cg(t, u(t))

}
dt, t ∈ [0, T ] (10)

T∫

0

w(t)T g(t, u(t))dt ≥ 0, (11)

r∑
i=1

τi = 1, τi ≥ 0, i ∈ L w j (t) ≥ 0, j ∈ M, a.e. t ∈ [0, T ].

Theorem 4.1 (Weak Duality) Assume that for all feasible solutions x for (MCT) and all
feasible solutions (u, τ, w) for (W D):

(i)
T∫
0
{ fi (t, x(t)) + w(t)T g(t, x(t))}dt is ρi -SPIX with respect to η for all i ∈ L and

∑r
i τiρi ≥ 0. Then, the following can not be hold:

T∫

0

fi (t, x(t))dt <

T∫

0

{ fi (t, u(t))dt + w(t)T g(t, u(t))}dt, (12)

for some i ∈ M
T∫

b

f j (t, x(t))dt ≤
T∫

0

{ f j (t, u(t)) + w(t)T g(t, u(t))}dt, ∀ j ∈ M (13)

Proof Suppose contrary to the result of theorem that (12) and (13) hold. Since x is a feasible
solution for MCT and (u, τ, w) is a feasible solution for W D, it follows that

T∫

0

{ fi (t, x(t)) + w(t)T g(t, x(t))}dt <

T∫

0

{ fi (t, u(t)) + w(t)T g(t, u(t))}dt, (14)

for some i ∈ L ,

T∫

0

{ f j (t, x(t)) + w(t)T g(t, x(t))}dt ≤
T∫

0

{ f j (t, u(t)) + w(t)T g(t, u(t))}dt, (15)

for all j ∈ L .
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Using (i) and (14-15) we get

T∫

0

{ f 0
i (t, x(t)); η(t, x(t), u(t)) + w(t)T g0(t, u(t)); η(t, x(t), u(t))}dt (16)

< −ρi

T∫

0

d2(t, x(t), u(t))dt ∀i ∈ L .

Multiplying each inequality of (16) by τi ≥ 0, i = 1, 2, . . . , r and adding,

T∫

0

[
r∑

i=1

τi f 0
i (t, x(t)); η(t, x(t), u(t)) + w(t)T g0(t, u(t)); η(t, x(t), u(t))

]
dt (17)

< −(

r∑
i

τiρi )

T∫

0

d2(t, x(t), u(t))dt < 0.

This contradicts (7). ��
Remark 4.2 The weak duality theorem also holds under the following different types of
assumptions;

(ii) τi > 0,
T∫
0
{ fi (t, x(t)) + w(t)T g(t, x(t))}dt, is ρi -PIX with respect to function η

for all i ∈ L and
∑r

i=1 τiρi ≥ 0.

(iiii)
T∫
0
{ fi (t, x(t)) + w(t)T g(t, x(t))dt, is ρi -QIX with respect to function η for all

i ∈ L and
∑r

i=1 τiρi > 0.

Corollary 4.3 Assume that weak duality theorem 4.1 holds between (MCT) and (WD). If
u0 is feasible for (MCT), and (u0, τ 0, ω0) is feasible for (WD) with w0(t)T g(t, u0(t)) = 0.
Then, u0 is an efficient for (MCT) and (u0, τ 0, ω0) is an efficient solution for (WD).

Proof Suppose u0 is not efficient for (MCT). Then there exists a feasible solution x for
(MCT) such that

T∫

0

fi (t, x(t))dt <

T∫

0

fi (t, u0(t))dt, for some i ∈ L ,

T∫

0

fi (t, x(t))dt ≤
T∫

0

fi (t, u0(t))dt, for all i ∈ L .

Since w0(t)T g(t, u0(t)) = 0 we obtain

T∫

0

fi (t, x(t))dt <

T∫

0

fi (t, u0(t))dt + w(t)T g(t, u0(t))dt, for some i ∈ L ,
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T∫

0

fi (t, x(t))dt <

T∫

0

{ fi (t, u0(t))dt + w(t)T g(t, u0)}dt, for all i ∈ L .

This contradicts weak duality. Hence u0 is an efficient solution for (MCT). Now suppose
that (u0, τ 0, ω0) is not an efficient solution for (WD). Then there exists (u, τ, ω) feasible for
(WD) such that

T∫

0

{ fi (t, u(t)) + w(t)T g(t, u(t))}dt >

T∫

0

{ fi (t, u0(t)) + w0(t)T g(t, u0)}dt,

for some i ∈ L ,

T∫

0

{ fi (t, u(t)) + w(t)T g(t, u(t))}dt ≥
T∫

0

{ fi (t, u0(t)) + w0(t)T g(t, u0)}dt,

for all i ∈ L . Since w0(t)T g(t, u0) = 0, then

T∫

0

{ fi (t, u(t))dt + w(t)T g(t, u(t))dt >

T∫

0

fi (t, u0(t))dt,

for some i ∈ L ,

T∫

0

{ fi (t, u(t))dt + w(t)T g(t, u(t))dt ≥
T∫

0

fi (t, u0(t))dt,

for all i ∈ L . This contradicts weak duality. Hence (u0, τ 0, ω0) is an efficient solution for
(WD). ��
Theorem 4.4 (Strong duality) Let u0 be an efficient solution for (MCT) and assume that u0

satisfies the constraint qualification (CQ) for Pk(u0) for at least one k ∈ L. Then, there exist
τ 0 ∈ R

r and piecewise smooth function w0 : I → R
p such that (u0, τ 0, w0) is feasible

for (W D) and w0(t)T g(t, u0(t)) = 0. If weak duality also holds between (MCT) and (WD)
then, (u0, τ 0, w0) is an efficient solution for (WD).

Proof Since u0 satisfies the constraint qualification for at least one k, it follows from Lemma
3.2 that there exist τ 0 ∈ R

r and piecewise smooth function w0 : I → R
m such that

0 ∈
T∫

0

{
r∑

i=1

τ 0
i (∂c fi (t, u0(t)) + w0(t)T ∂cg(t, u0(t)))

}
dt, (18)

w0(t)T g(t, u0(t)) = 0, a.e. t ∈ [0, T ] (19)

w0(t) ≥ 0, τ 0
i ≥ 0, i = 1, . . . , r

r∑
i=1

τ 0
i = 1. (20)

Now it follows from (18−19), that (u0, τ 0, w0) is feasible for (W D).
Also w0(t)T g(t, u0(t)) = 0 and weak duality holds between (MCT) and (WD). Thus the
result follows from Corollary 4.3. ��
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4.3 Duality between MCT and MWD

Theorem 4.5 (Weak Duality) Assume that for all feasible solutions x for (MCT) and all
feasible solutions (u, τ, w) for (MWD):

(i)
T∫
0

fi (t, x(t))dt is ρi -SQIX with respect to function η for all i ∈ L

(ii)
T∫
0

w(t)T g(t, x(t))dt is σ -QIX with respect to function η,

(iii)
∑

τiρi + σ ≥ 0.

Then, the following can not be hold:

T∫

0

fi (t, x(t))dt <

T∫

0

fi (t, u(t))dt for some i ∈ L (21)

T∫

b

f j (t, x(t))dt ≤
T∫

0

f j (t, u(t))dt, for all j ∈ L (22)

Proof Suppose contrary to the result of theorem that (21−22) hold. Then (i) yields

T∫

0

f 0
i (t, u(t)); η(x(t), u(t))dt < −ρi

T∫

0

d2(t, x(t), u(t))dt, (23)

for all i ∈ L . Multiplying each inequality of (23) by τi ≥ 0, and summing up for all i ∈ L ,
we obtain

T∫

0

r∑
i=1

f 0
i (t, u(t)); η(x(t), u(t))dt < −

(
r∑

i=1

ρiτi

) T∫

0

d2(t, x(t), u(t))dt, (24)

for all i ∈ L . Since x is feasible for (MCT) and (u, τ, w) is feasible for (MWD), it follows
that

T∫

0

w(t)T g(t, x(t))dt ≤
T∫

0

w(t)T g(t, u(t))dt. (25)

Now by using (ii), we get

T∫

0

w(t)T g0(t, u(t); η(x(t), u(t))dt ≤ −σ

T∫

0

d2(t, x(t), u(t))dt (26)

adding (24) and (26),

T∫

0

{∑
τi f 0

i (t, u(t)); η(x(t), u(t)) + w(t)T g0(t, u(t), η(x(t), u(t)))
}

dt <
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−
(

r∑
i=1

τiρi + σ

) T∫

0

d2(t, x(t), u(t))dt,∀i ∈ L .

It follows from hypothesis (iii) that

T∫

0

(
r∑

i=1

τi f 0
i (t, u(t)); η(x(t), u(t)) + w(t)T g0(t, u(t), η(x(t), u(t)))

)
dt < 0. (27)

This contradicts (31). Hence we have the result. ��
Remark 4.6 The weak duality theorem also holds under the following different types of
assumptions;

(a)
∫ T

0 fi (t, x(t))dt is ρi -QIX with respect to functions η for all i ∈ L and∫ T
0 w(t)T g0(t, x(t))dt is σ -SQIX with respect to the same η and

∑
τiρi + σ ≥ 0.

(b)
∫ T

0 fi (t, x(t))dt is ρi -QIX with respect to functions η for all i ∈ L and∫ T
0 w(t)T g0(t, x(t)dt is σ -QIX with respect to the same η , and

∑
τiρi + σ > 0.

Corollary 4.7 Assume that weak duality theorem 4.5 holds between (MCT) and (MWD). If
u0 is a feasible solution for (MCT), and (u0, τ 0, ω0) is a feasible solution for (MWD). Then,
u0 is an efficient solution for (MCT) and (u0, τ 0, ω0) is an efficient solution for (MWD).

Proof Suppose u0 is not efficient for (MCT). Then there exists a feasible solution x for
(MCT) such that

T∫

0

fi (t, x(t))dt <

T∫

0

fi (t, u0(t))dt for some i ∈ L ,

T∫

0

fi (t, x(t))dt ≤
T∫

0

fi (t, u0(t))dt for all i ∈ L

This contradicts weak duality. Hence u0 is feasible for MCT . Now suppose that(u0, τ 0, ω0)

is not efficient for (MWD). Then there exists (u, τ, ω) feasible for (MWD) such that

T∫

0

{ fi (t, u(t))dt >

T∫

0

{ fi (t, u0(t))dt, for some i ∈ L

T∫

0

{ fi (t, u(t))dt ≥
T∫

0

{ fi (t, u0(t))dt, for all i ∈ L

This contradicts weak duality. Hence (u0, τ 0, ω0) is not efficient for (W2MCP). ��
Theorem 4.8 Let u0 be efficient for (MCT) and assume that u0 satisfies the constraint qual-
ification (CQ) for Pk(u0) for at least one k ∈ L. Then there exist τ 0 ∈ R

r and piecewise
smooth function w0 : I → R

m such that (u0, τ 0, w0) is feasible for (MWD). If weak duality
also holds between (MCT ) and (MW D) then (u0, τ 0, w0) is efficient for (MWD).
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Proof Since u0 satisfies the constraint qualification for at least one k, it follows from Lemma
3.2 that there exist τ 0 ∈ R

r and piecewise smooth function w0 : I → R
m such that

0 ∈
T∫

0

{
r∑

i=1

τ 0
i (∂c fi (t, u0(t)) + w0(t)T ∂cg(t, u0(t)))

}
dt t ∈ [0, T ] (28)

w0(t)T g(t, u0(t)) = 0, a.e. t ∈ [0, T ] (29)

w0(t) ≥ 0, τ 0
i ≥ 0, i = 1, . . . , r

r∑
i=1

τ 0
i = 1. (30)

Now it follows from (28−29), that (u0, τ 0, w0) is feasible for (MW D). Thus the result
follows from Corollary 4.7. ��

We end our paper with the following example which illustrates the Mond-Weir type dual.
Example 4.9 Consider the following multiobjective continuous-time problem:

(MCT) min

⎡
⎣

1∫

0

f1(t, x(t))dt,

1∫

0

f2(t, x(t))dt

⎤
⎦

s.t. gi (t, x(t)) ≤ 0, i ∈ M = {1, 2, 3}, a.e. t ∈ [0, 1]

where

f1(t, x(t)) := |x1(t) − t |, f2(t, x(t)) := |x2(t) − t |,
g1(t, x(t)) := −x1(t), g2(t, x(t)) := −x2(t), g3(t, x(t)) = x1(t) + x2(t) − 2t,

and x : [0, 1] → R
2 is defined by x(t) = (x1t, x2t), x1, x2 ∈ R.

It can be easily verified that x∗(t) = (t, t) is an efficient point of the problem (MCT) and
PK (x∗) for k = 1, 2 satisfy constraint qualification. The necessary optimality condition is
satisfied for τ1 = 1

2 , τ2 = 1
2 , w∗

1(t) = 0, w∗
2(t) = 0, w∗

3(t) = t, and

0 ∈
1∫

0

{
2∑

i=1

τi∂c fi (t, x∗(t)) + w(t)T ∂cg(t, x∗(t))
}

dt, t ∈ [0, 1] (31)

1∫

0

w(t)T g(t, x∗(t))dt ≥ 0, (32)

2∑
i=1

τi = 1, τi ≥ 0, w j (t) ≥ 0, j ∈ M, a.e. t ∈ [0, 1].

Hence (x∗, τ ∗, w∗) is efficient for (MWD), where x∗(t) = (t, t), τ ∗ = ( 1
2 , 1

2 ) and ω∗(t) =
(0, 0, t).
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